Single-phase Induction Motors A three phase motor may be run from a single phase power source. (Figure below) However, it will...
Single-phase Induction Motors
A three phase motor may be run from a single phase power source. (Figure below) However, it will not self-start. It may be hand started in either direction, coming up to speed in a few seconds. It will only develop 2/3 of the 3-φ power rating because one winding is not used.
The single coil of a single phase induction motor does not produce a rotating magnetic field, but a pulsating field reaching maximum intensity at 0o and 180o electrical. (Figure below)
Another view is that the single coil excited by a single phase current produces two counter rotating magnetic field phasors, coinciding twice per revolution at 0o (Figure above-a) and 180o (figure e). When the phasors rotate to 90o and -90o they cancel in figure b. At 45o and -45o (figure c) they are partially additive along the +x axis and cancel along the y axis. An analogous situation exists in figure d. The sum of these two phasors is a phasor stationary in space, but alternating polarity in time. Thus, no starting torque is developed.
However, if the rotor is rotated forward at a bit less than the synchronous speed, It will develop maximum torque at 10% slip with respect to the forward rotating phasor. Less torque will be developed above or below 10% slip. The rotor will see 200% - 10% slip with respect to the counter rotating magnetic field phasor. Little torque (see torque vs slip curve) other than a double freqency ripple is developed from the counter rotating phasor. Thus, the single phase coil will develop torque, once the rotor is started. If the rotor is started in the reverse direction, it will develop a similar large torque as it nears the speed of the backward rotating phasor.
Single phase induction motors have a copper or aluminum squirrel cage embedded in a cylinder of steel laminations, typical of poly-phase induction motors.
Permanent-split capacitor motor
One way to solve the single phase problem is to build a 2-phase motor, deriving 2-phase power from single phase. This requires a motor with two windings spaced apart 90o electrical, fed with two phases of current displaced 90o in time. This is called a permanent-split capacitor motor in Figure below.
This type of motor suffers increased current magnitude and backward time shift as the motor comes up to speed, with torque pulsations at full speed. The solution is to keep the capacitor (impedance) small to minimize losses. The losses are less than for a shaded pole motor. This motor configuration works well up to 1/4 horsepower (200watt), though, usually applied to smaller motors. The direction of the motor is easily reversed by switching the capacitor in series with the other winding. This type of motor can be adapted for use as a servo motor, described elsewhere is this chapter.
Single phase induction motors may have coils embedded into the stator as shown in Figure above for larger size motors. Though, the smaller sizes use less complex to build concentrated windings with salient poles.
Capacitor-start induction motor
In Figure below a larger capacitor may be used to start a single phase induction motor via the auxiliary winding if it is switched out by a centrifugal switch once the motor is up to speed. Moreover, the auxiliary winding may be many more turns of heavier wire than used in a resistance split-phase motor to mitigate excessive temperature rise. The result is that more starting torque is available for heavy loads like air conditioning compressors. This motor configuration works so well that it is available in multi-horsepower (multi-kilowatt) sizes.
Capacitor-run motor induction motor
A variation of the capacitor-start motor (Figure below) is to start the motor with a relatively large capacitor for high starting torque, but leave a smaller value capacitor in place after starting to improve running characteristics while not drawing excessive current. The additional complexity of the capacitor-run motor is justified for larger size motors.
A motor starting capacitor may be a double-anode non-polar electrolytic capacitor which could be two + to + (or - to -) series connected polarized electrolytic capacitors. Such AC rated electrolytic capacitors have such high losses that they can only be used for intermittent duty (1 second on, 60 seconds off) like motor starting. A capacitor for motor running must not be of electrolytic construction, but a lower loss polymer type.
Resistance split-phase motor induction motor
If an auxiliary winding of much fewer turns of smaller wire is placed at 90o electrical to the main winding, it can start a single phase induction motor. (Figure below) With lower inductance and higher resistance, the current will experience less phase shift than the main winding. About 30o of phase difference may be obtained. This coil produces a moderate starting torque, which is disconnected by a centrifugal switch at 3/4 of synchronous speed. This simple (no capacitor) arrangement serves well for motors up to 1/3 horsepower (250 watts) driving easily started loads.
This motor has more starting torque than a shaded pole motor (next section), but not as much as a two phase motor built from the same parts. The current density in the auxiliary winding is so high during starting that the consequent rapid temperature rise precludes frequent restarting or slow starting loads.
Nola power factor corrrector
Frank Nola of NASA proposed a power factor corrector for improving the efficiency of AC induction motors in the mid 1970’s. It is based on the premise that induction motors are inefficient at less than full load. This inefficiency correlates with a low power factor. The less than unity power factor is due to magnetizing current required by the stator. This fixed current is a larger proportion of total motor current as motor load is decreased. At light load, the full magnetizing current is not required. It could be reduced by decreasing the applied voltage, improving the power factor and efficiency. The power factor corrector senses power factor, and decreases motor voltage, thus restoring a higher power factor and decreasing losses.
Since single-phase motors are about 2 to 4 times as inefficient as three-phase motors, there is potential energy savings for 1-φ motors. There is no savings for a fully loaded motor since all the stator magnetizing current is required. The voltage cannot be reduced. But there is potential savings from a less than fully loaded motor. A nominal 117 VAC motor is designed to work at as high as 127 VAC, as low as 104 VAC. That means that it is not fully loaded when operated at greater than 104 VAC, for example, a 117 VAC refrigerator. It is safe for the power factor controller to lower the line voltage to 104-110 VAC. The higher the initial line voltage, the greater the potential savings. Of course, if the power company delivers closer to 110 VAC, the motor will operate more efficiently without any add-on device.
Any substantially idle, 25% FLC or less, single phase induction motor is a candidate for a PFC. Though, it needs to operate a large number of hours per year. And the more time it idles, as in a lumber saw, punch press, or conveyor, the greater the possibility of paying for the controller in a few years operation. It should be easier to pay for it by a factor of three as compared to the more efficient 3-φ-motor. The cost of a PFC cannot be recovered for a motor operating only a few hours per day. [7]
Summary: Single-phase induction motors
- Single-phase induction motors are not self-starting without an auxiliary stator winding driven by an out of phase current of near 90o. Once started the auxiliary winding is optional.
- The auxiliary winding of a permanent-split capacitor motor has a capacitor in series with it during starting and running.
- A capacitor-start induction motoronly has a capacitor in series with the auxiliary winding during starting.
- A capacitor-run motor typically has a large non-polarized electrolytic capacitor in series with the auxiliary winding for starting, then a smaller non-electrolytic capacitor during running.
- The auxiliary winding of a resistance split-phase motor develops a phase difference versus the main winding during starting by virtue of the difference in resistance.
The single phase induction motors are made self-starting by providing an additional flux by some additional means. Now depending upon these additional means the single phase induction motors are classified as:
1. Split phase induction motor.
2. Capacitor start inductor motor.
3. Capacitor start capacitor run induction motor (two value
capacitor method).
4. Permanent split capacitor (PSC) motor.
5. Shaded pole induction motor.
Split Phase Induction Motor
In addition to the main winding or running winding, the stator of single phase induction motor carries another winding called auxiliary winding or starting winding. A centrifugal switch is connected in series with auxiliary winding. The purpose of this switch is to disconnect the auxiliary winding from the main circuit when the motor attains a speed up to 75 to 80% of the synchronous speed. We know that the running winding is inductive in nature. Our aim is to create the phase difference between the two winding and this is possible if the starting winding carries high resistance. Let us say
Irun is the current flowing through the main or running winding,
Istart is the current flowing in starting winding,
and VT is the supply voltage.
We know that for highly resistive winding the current is almost in phase with the voltage and for highly inductive winding the current lag behind the voltage by large angle. The starting winding is highly resistive so, the current flowing in the starting winding lags behind the applied voltage by very small angle and the running winding is highly inductive in nature so, the current flowing in running winding lags behind applied voltage by large angle. The resultant of these two current is IT. The resultant of these two current produce rotating magnetic field which rotates in one direction. In split phase induction motor the starting and main current get splitted from each other by some angle so this motor got its name as split phase induction motor.
Applications of Split Phase Induction Motor
Split phase induction motors have low starting current and moderate starting torque. So these motors are used in fans, blowers, centrifugal pumps, washing machine, grinder, lathes, air conditioning fans, etc. These motors are available in the size ranging from 1 / 20 to 1 / 2 KW.
Capacitor Start IM and Capacitor Start Capacitor Run IM
The working principle and construction of Capacitor start inductor motors and capacitor start capacitor run induction motors are almost the same. We already know that single phase induction motor is not self starting because the magnetic field produced is not rotating type. In order to produce rotating magnetic field there must be some phase difference. In case of split phase induction motor we use resistance for creating phase difference but here we use capacitor for this purpose. We are familiar with this fact that the current flowing through the capacitor leads the voltage. So, in capacitor start inductor motor and capacitor start capacitor run induction motor we are using two winding, the main winding and the starting winding. With starting winding we connect a capacitor so the current flowing in the capacitor i.e Ist leads the applied voltage by some angle, φst.
The running winding is inductive in nature so, the current flowing in running winding lags behind applied voltage by an angle, φm. Now there occur large phase angle differences between these two currents which produce an resultant current, I and this will produce a rotating magnetic field. Since the torque produced by these motors depends upon the phase angle difference, which is almost 90°. So, these motors produce very high starting torque. In case of capacitor start induction motor, the centrifugal switch is provided so as to disconnect the starting winding when the motor attains a speed up to 75 to 80% of the synchronous speed but in case of capacitor start capacitors run induction motor there is no centrifugal switch so, the >capacitor remains in the circuit and helps to improve the power factor and the running conditions of single phase induction motor.
Application of Capacitor Start IM and Capacitor Start Capacitor Run IM
These motors have high starting torque hence they are used in conveyors, grinder, air conditioners, compressor, etc. They are available up to 6 KW.
Permanent Split Capacitor (PSC) Motor
It has a cage rotor and stator. Stator has two windings – main and auxiliary winding. It has only one capacitor in series with starting winding. It has no starting switch.
Advantages and Applications
No centrifugal switch is needed. It has higher efficiency and pull out torque. It finds applications in fans and blowers in heaters and air conditioners. It is also used to drive office machinery.
Shaded Pole Single Phase Induction Motors
The stator of the shaded pole single phase induction motor has salient or projected poles. These poles are shaded by copper band or ring which is inductive in nature. The poles are divided into two unequal halves. The smaller portion carries the copper band and is called as shaded portion of the pole.
ACTION: When a single phase supply is given to the stator of shaded pole induction motor an alternating flux is produced. This change of flux induces emf in the shaded coil. Since this shaded portion is short circuited, the current is produced in it in such a direction to oppose the main flux. The flux in shaded pole lags behind the flux in the unshaded pole. The phase difference between these two fluxes produces resultant rotating flux.
We know that the stator winding current is alternating in nature and so is the flux produced by the stator current. In order to clearly understand the working of shaded pole induction motor consider three regions-
1. When the flux changes its value from zero to nearly maximum
positive value.
2. When the flux remains almost constant at its maximum value.
3. When the flux decreases from maximum positive value to zero.
REGION 1:
When the flux changes its value from zero to nearly maximum positive value – In this region the rate of rise of flux and hence current is very high. According to Faraday's law whenever there is change in flux emf gets induced. Since the copper band is short circuit the current starts flowing in the copper band due to this induced emf. This current in copper band produces its own flux. Now according to Lenz's law the direction of this current in copper band is such that it opposes its own cause i.e rise in current. So the shaded ring flux opposes the main flux, which leads to the crowding of flux in non shaded part of stator and the flux weaken in shaded part. This non uniform distribution of flux causes magnetic axis to shift in the middle of the non shaded part.
REGION 2:
When the flux remains almost constant at its maximum value- In this region the rate of rise of current and hence flux remains almost constant. Hence there is very little induced emf in the shaded portion. The flux produced by this induced emf has no effect on the main flux and hence distribution of flux remains uniform and the magnetic axis lies at the center of the pole.
REGION 3:
When the flux decreases from maximum positive value to zero - In this region the rate of decrease in the flux and hence current is very high. According to Faraday's law whenever there is change in flux emf gets induced. Since the copper band is short circuit the current starts flowing in the copper band due to this induced emf. This current in copper band produces its own flux. Now according to Lenz's law the direction of the current in copper band is such that it opposes its own cause i.e decrease in current. So the shaded ring flux aids the main flux, which leads to the crowding of flux in shaded part of stator and the flux weaken in non shaded part. This non uniform distribution of flux causes magnetic axis to shift in the middle of the shaded part of the pole.
This shifting of magnetic axis continues for negative cycle also and leads to the production of rotating magnetic field. The direction of this field is from non shaded part of the pole to the shaded part of the pole.
Advantages and Disadvantages of Shaded Pole Motor
The advantages of shaded pole induction motor are
- Very economical and reliable.
- Construction is simple and robust because there is no centrifugal switch.
The disadvantages of shaded pole induction motor are
1.Low power factor.
2.The starting torque is very poor.
3.The efficiency is very low as, the copper losses are high due to presence of copper band.
4.The speed reversal is also difficult and expensive as it requires another set of copper rings.
Applications of Shaded Pole Motor
Applications of Shaded pole motors induction motor are-
Due to their low starting torques and reasonable cost these motors are mostly employed in small instruments, hair dryers, toys, record players, small fans, electric clocks etc. These motors are usually available in a range of 1/300 to 1/20 KW.
source: electrical4u,electricaleasy
COMMENTS